
SSL/TLS 공격에 대한 신규 대응 방안
New Security Approaches for SSL/TLS Attacks Resistance in Practice

짠송닷푹(Tran Song Dat Phuc)
*
, 이창훈(Changhoon Lee)

**

초 록

SSL의 취약점을 이용한 공격 기법인 BEAST를 발표했던 Juliano Rizzo와 Thai Duong이

새로운 공격 기법인 CRIME(Compression Ration Info-leak Made Easy)을 발표하였다.

CRIME 공격은 암호화된 데이터에 대한 비밀 정보를 찾아내기 위해 데이터가 압축 및

암호화되는 방법의 취약점을 이용한 공격이다. 공격자는 이 공격법을 반복하여 데이터를

복호화할 수 있고, HTTP 세션의 쿠기 데이터를 복원할 수 있다. 공격자는 SPDY 및

SSL/TLS의 압축 함수를 대상으로 하는 이 보안 취약점을 이용하여 다양한 길이의 입력

데이터를 선택함으로써 암호화된 데이터의 길이를 확인할 수 있다. TLS 프로토콜은 두

통신자(서버 및 클라이언트) 사이에서 발생하는 데이터 통신의 무결성을 보장하고 두 대상에

대한 인증 수단을 제공하고 있으며, 최근 몇 년 동안 이들을 대상으로 TLS 메커니즘의 몇몇

특성들을 이용한 다양한 공격들이 수행되고 연구되었다. 본 논문에서는 CRIME 및

SSL/TLS에 대한 다양한 공격 기법들과 이들에 대한 대응 및 구현 방안에 대하여 논의하며,

실용적인 관점에서 SSL/TLS 공격 대응 방안의 방향을 제시한다.

ABSTRACT

Juliano Rizzo and Thai Duong, the authors of the BEAST attack [11, 12] on SSL, have

proposed a new attack named CRIME [13] which is Compression Ratio Info-leak Made

Easy. The CRIME exploits how data compression and encryption interact to discover secret

information about the underlying encrypted data. Repeating this method allows an attacker

to eventually decrypt the data and recover HTTP session cookies. This security weakness

targets in SPDY and SSL/TLS compression. The attack becomes effective because the

attacker is enable to choose different input data and observe the length of the encrypted

data that comes out. Since Transport Layer Security (TLS) ensures integrity of data transmitted

between two parties (server and client) and provides strong authentication for both parties,

in the last few years, it has a wide range of attacks on SSL/TLS which have exploited

various features in the TLS mechanism. In this paper, we will discuss about the CRIME

http://www.jsebs.org

ISSN: 2288-3908

The Journal of Society for e-Business Studies

Vol.22, No.2, May 2017, pp.169-185

https://doi.org/10.7838/jsebs.2017.22.2.169

1)

This study was supported by the Research Program funded by the SeoulTech (Seoul National University

of Science and Technology).

The researcher claims no conflicts of interest.

* First Author, Department of Computer Science and Engineering, Seoul National University of Science and

Technology(datphuc_89@yahoo.com)

** Corresponding Author, Department of Computer Science and Engineering, Seoul National University of

Science and Technology(chlee@seoultech.ac.kr)

Received: 2017-05-08, Review completed: 2017-05-15, Accepted: 2017-05-19

170 한국전자거래학회지 제22권 제2호

and other versions of SSL/TLS attacks along with countermeasures, implementations. We

also present direction for SSL/TLS attacks resistance in practice.

키워드：SSL/TLS, 핸드쉐이크 프로토콜, CRIME, BEAST, BREACH, SPDY, 압축 함수,

DEFLATE, LZ77

SSL/TLS, Handshake Protocol, Record Layer, CRIME, BEAST, BREACH, SPDY,

Compression, DEFLATE, LZ77

1. Introduction

Secure Sockets Layer (SSL) and Transport

Layer Security (TLS) protocols which devel-

oped by Netscape to secure transaction over

network communications, have become the se-

cure standard factor for ensuring authenti-

cation, integrity, and data privacy of messages

exchanged between parties (server-client) in

the Internet. The SSL/TLS protocol can be

easily operated with any other services, such

as FTP, VPN and VoIP, or any other protocols,

such as HTTPS, SIPS and SMTPS. It ensures

the authentication for parties in a communica-

tion session, the encryption for data when

transmission, and the data integrity in transit

as well. SSL/TLS is used not only with web

browser to browse the Internet more secure

but also whenever data confidentiality and pro-

tection are necessary, such as SQL access, re-

mote access, email, and transactions with an

e-commerce site. The popular protocol is oper-

ated with SSL/TLS is HTTP which executes

on the application layer and the top layer to

provide a trust and secure data communication

over Internet. Compression is applied within

HTTP to reduce used bandwidth and trans-

mission time before sending out data from web

server. The two most common methods are

gzip and deflate. In fact, HTTP supports vari-

ous compression methods within a com-

pression algorithms list so any methods in list

can be used to perform compression.

The popularity of SSL/TLS leads to the fact

that its security issues has been intensive

studied. Some types of attacks were designed

to exploit the weakness properties within the

SSL/TLS architecture, such as BEAST [11,

12], CRIME [13], BREACH [9], TIME [7] and

LUCKY13 [1]. The cipher suites used in SSL/

TLS for encryption and key establishment

were also proposed along with mitigations

and countermeasures to prevent those attacks.

This paper describes numerous SSL/TLS

attacks including CRIME and other versions:

BEAST, BREACH. We give a general over-

view on basic concepts of SSL/TLS protocol

and SSL/TLS attacks, like countermeasures

and implementations. The direction of SSL/

TLS attacks resistance is also discussed.

Finally, the briefly conclusion is given to sum-

mary and complete our paper.

 SSL/TLS 공격에 대한 신규 대응 방안 171

2. SSL/TLS Protocol and its

Impact

TLS and SSL are protocols which not only

help to authenticate servers and clients but

also encrypt data between these parties across

an untrusted network. The terms SSL and TLS

are often used interchangeably or in con-

junction with each other (SSL/TLS), where

SSL 3.0 served as the basis for TLS 1.0 which

is sometimes referred to as SSL 3.1.

2.1 SSL/TLS Protocol

SSL/TLS is the most widely protocol which

provides secure HTTP (HTTPS) transactions

between clients (browser) and servers. TLS/

SSL can be operated with other protocols, such

as Simple Mail Transfer Protocol (SMTP), File

Transfer Protocol (FTP), and Lightweight

Directory Access Protocol (LDAP). It ensures

server-client authentication, data encryption

and data integrity over network communi-

cations.

A TLS link exists between two peers and

is identified by a session that contains in-

formation regarding the security mechanisms

used. A single session can have multiple con-

nections. TLS provides authentication in-

tegrity and confidentiality by supporting sev-

eral cipher suites but can also support minimal

or no security. A cipher suite defines what

combination of authentication, encryption and

integrity algorithms to be used. Some of the

algorithms that provide encryption are AES,

3DES and RC4, and some of the algorithms

that provide integrity are MD5, SHA1 and

SHA-256. TLS provide authentication by us-

ing certificates signed by a trusted Certificate

Authority (CA).

The SSL protocol consists of two protocols:

the Record Protocol and the Handshake

Protocol. The purpose of these protocols is

to help client to authenticate a server and es-

tablish a secure encrypted SSL connection.

The SSL Record Protocol which applies cryp-

tographic cipher and mode of operations for

ensuring confidentiality and MAC algorithm

for ensuring integrity is used to exchange re-

cords between the client and server. The SSL

Handshake Protocol uses the SSL Record

Protocol to exchange a series of messages

between a server and a client when they ini-

tially establish an SSL connection. This ex-

change of messages is enable for authenticat-

ing the server to the client, negotiating the

used cryptographic algorithms or ciphers, op-

tionally authenticating the client to the server

by exchanging digital certificates, using pub-

lic key encryption to generate and share secret

keys, and establish sessions and encrypted

SSL connections.

 In the authentication process, a client sends

a message to a server, and then receives re-

sponds from the server with information that

the server uses to authenticate itself. The client

and server perform an additional exchange of

172 한국전자거래학회지 제22권 제2호

<Figure 1> SSL Record Protocol (left) and SSL Handshake (right)

session keys, and finish the authentication.

Once authentication step is completed, SSL-

secured communication can be established be-

tween the server and the client using the sym-

metric encryption keys generated during the

authentication process. This type of authenti-

cation called unilateral authentication where

only one of the parties is authenticated to the

other. In this case, the server authenticates

itself to the client, but the client does not.

With mutual authentication, the client also

authenticate itself to the server by presenting

certificate to the server (signing all messages

with the encrypted premaster secret). SSL also

provides an authentication process named

anonymous key exchange based on the Diffie-

Hellman protocol. However, this process is un-

secure while it is vulnerable to man-in-the-

middle attacks because neither party is au-

thenticated to the other.

2.2 SSL/TLS Benefits in Network

Communications

SSL/TLS protocol provides benefits to both

two parties (clients and servers) through its

support over numerous methods of authentica-

tion, integrity, privacy, and interoperability

since they are easy to deploy and use.

SSL/TLS helps to authenticate the identities

of those parties in a secure communication

through encryption algorithms. This protocol

also provides integrity todata transmitted in

network using check value for preventing data

disclosure and resisting common types of at-

tacks, such as man-in-the-middle attack, re-

play attack and rollback attack. Furthermore,

SSL/TLS offers relating addition choice of op-

tions support for building mechanisms of au-

thentication, integrity, and algorithms of en-

cryption and hashing that being used during

 SSL/TLS 공격에 대한 신규 대응 방안 173

the secure session.

SSL/TLS works with most Web browsers,

operating systems and Web servers. It is also

integrated in a variety of other applications.

TLS/SSL is implemented at application layer,

that most of its operations are completely in-

visible to the client. This means the client still

is protected from malicious attackers even if

they do not have or limit knowledge of network

communications security.

2.3 SSL/TLS Drawbacks

The most limitation when implementing

SSL/TLS is the increase of processor load.

SSL/TLS requires with its cryptography, pub-

lic key operations and other attributes that are

CPU-intensive. It leads to the high cost in per-

formance varies, resources needed. The more

and the longer connections are established, the

more performance varies and the more re-

sources are lost. The issue of optimization and

integration between SSL/TLS and various

computing systems should be considered.

Other problems relate to maintenance and

management. A TLS/SSL environment is

complex and requires maintenance that re-

quires the system administrator must con-

figure the system and manage certificates

much.

Besides, SSL/TLS vulnerabilities exist due

to the ways to configure it and its multiple

implementations. If a TLS connection uses no

authentication of either parties, the channel is

not protected against man-in-the-middle

attacks. Anonymous Diffie-Hellman is there-

fore discouraged by the IETF because it cannot

prevent man-in-the-middle attacks. If TLS is

used without Diffie-Hellman key exchange it

is often only necessary to acquire a server’s

private key to decrypt any messages sent to

that server. Stolen keys have been used in com-

bination with large-scale monitoring of servers.

This can be mitigated by improved protection

of the private key or by using forward secrecy.

A survey in 2012 showed that many im-

plementations of SSL/TLS often performed

certificate validation either incorrectly or not

at all. This problem is likely still prevalent

today. The most popular attack on this protocol

is man-in-the-middle attacks that acquire to

improve protection of the private key from

server where stolen keys can be used in combi-

nation with large-scale servers’ monitoring.

Many implementations of SSL/TLS often per-

form certificate validation either incorrect or

not at all.

3. Attacks against SSL/TLS

Protocol-CRIME and

Others

The major problem in SSL/TLS protocol is

information leakage that occurs when data is

compressed prior to encryption. Attacker first-

ly inject a javascript or arbitrary content that

generates predictable data (known plaintext

174 한국전자거래학회지 제22권 제2호

packets) into a website. Then he will be able

to get the unknown data by sniffing the net-

work of a client that opened this website (or

the network of the server) and using the en-

crypted packets of script with the known plain-

text packets to obtain encryption keys. By this

way, he can steal cookies and hijack the session

of the website. In this section, we present some

SSL/TLS attacks with the viewpoint of coun-

termeasures and implementations.

3.1 CRIME Attack

CRIME (Compression Ratio Info-leak Made

Easy) is a practical side-channel attack that

builds on weakness of information leakage. It

works by exploiting compression functions of

HTTP requests, and then observing the change

in compressed data length. CRIME exploits

TLS encryption to discover secret information

such as session tokens. The attacker enables

to intercept the victims network traffic and

to make the victims browser send requests.

A request contains a guess of the secret in-

formation that the attacker wishes to reveal.

Due to the properties of compression, the re-

quests that contain the best guess will have

a smaller size. By performing repeatedly im-

proved guesses the attacker can uncover the

secret information. The technique uses two da-

ta-compression schemes (DEFLATE and gzip)

to hijack web sessions protected by SSL/TLS

or reduces network congestion and the web-

pages’ loading time. This attack is capable of

being effected on most servers and client

browsers that support TLS compression.

Compression is a method to help reduce the

size of data that necessary to quickly transmit

between parties over a network or to save

storage space in a database. In TLS, the tech-

nique used to compress data is DEFLATE.

DEFLATE consists of two sub algorithms:

Lempel-Ziv coding (LZ77) and Huffman

coding. LZ77 is used to eliminate the re-

dundancy of repeating sequences, while Huff
man coding is used to eliminate the redundancy

of repeating symbols.

During a TLS handshake, the client states

in the ClientHello message the list of com-

pression algorithms that it supports. The serv-

er responds with the compression algorithm

in the Server Hello message. Compression al-

gorithms are specified by one-byte identifiers.

When TLS compression is used, it is applied

as a long stream on all the transferred data.

The purpose is that when exchanging big data

or large amount of information, it helps reduce

usage of bandwidth while preserving integrity

and privacy, even security.

We imagine the POST of browser is as fol-

lowing:

POST/target HTTP/1.1

Host: travel.com

User-Agent: Mozilla/5.0 (Windows 10 WO

W64; rv: 14.0) Gecko/20100101 Firefox/14.0.1

Cookie: sessionid=c73e89dff4119ab2e527cd

d648aefb59

 SSL/TLS 공격에 대한 신규 대응 방안 175

sessionid=a

The attacker want to get a client’s cookie.

He knows the session token ‘Cookie: sessio-

nid=?’ generated by the target website

‘travel.com’, then he will inject a javascript

to initiate requests to the server ‘sessionid=a’,

and observe the size of the compressed SSL

packets responsed by server. If the injected

character is match with the cookie value, the

size of the response will be smaller and other-

wise, the character is not in cookie value if

the size of the response is bigger. In this case,

the response packet has larger size than initial.

The same process is repeated since the at-

tacker makes a brute force attack on the cookie

value through the server responses until the

entire cookie value is retrieved.

3.1.1 Countermeasures

CRIME can be mitigated by disabling the

SSL compression, either at the client by patch-

ing or upgrading browser to prevent the use

of the SSL compression (Internet Explorer,

Google Chrome v.21 or later, Firefox v.15 or

later, Opera v.12 or later, Safari v.5 or later),

or at the server by using SSL Labs service

or SSL scanning tools to look for the com-

pression in the miscellaneous section and man-

age the protocol features of the TLS protocol,

then disable it.

Version: TLS 1.2 (0×0303)

Random

Session ID Length: 0

Cipher Suite:

TLS_ECDHE_RSA_WITH_AES_128_GCM

_SHA256 (0×c02f)

Compression Method: null (0)

The server response to a ClientHello mes-

sage by a Server Hello message which based

on the compressions offered by the client. The

client selects the ‘Compression Method ’ is

‘null’ means there is no compression, and the

data will not be compressed. By this way, a

server can control and refuse the use of

compression.

3.1.2 Implementations

The CRIME attack takes advantage on

SSL/TLS compression features when ex-

changing data between authenticated parties.

In addition, SPDY which is a networking proto-

col that uses a similar compression scheme

is also vulnerable. The SPDY protocol was

developed by Google and uses techniques like

compression, multiplexing and prioritization to

reduce the latency of web pages. SPDY has

been implemented in popular browsers like

Google Chrome or Firefox, and be supported

by several websites such as Google search,

Gmail and Twitter.

TLS compression supported among web-

sites is widespread. SSL Pulse is a project

which monitors SSL/TLS implementations on

the world’s top of 180,000 HTTPS-enabled

websites. Due to SSL Pulse, it has more than

176 한국전자거래학회지 제22권 제2호

<Figure 2> CBC Mode of Operation

forty-percent of servers supports compression.

However, there is a low level since just about

ten-percent of client-side support TLS or

SPDY compression. The acquirement for

CRIME attack to apply is that both the server

and the client need to support the compression

feature.

In practice, Internet Explorer never sup-

ported TLS or SPDY compression with all its

versions. Mozilla Firefox v.15 or latest versions

removes the compression, so these browsers

are not vulnerable to CRIME attack.

3.2 BEAST Attack

Thai Duong and Juliano Rizzo proposed the

BEAST (browser exploit against SSL/TLS)

which carries out on TLS v1.0. However, TLS

v1.2 is not susceptible to thistype of attack.

Whenever we log into a websitepage, after

authentication we will see the authenticated

page with a “session id”. All the “session id”

is encrypted to prevent session hijacking. A

“session id” is assigned by a server to a client

to maintain the current state of the web page

which is a random number or string. It is placed

in the site cookie or in the browser’s URL.

The BEAST attack is a chosen-plaintext

attack targets on TLS 1.0. Since the cookie

place is predictable, the attacker can monitor

the encrypted traffic and use the session cookie

value as an initialization vector (IV) to guess

plain text message. He can gather the IVs for

each record just by sniffing the network. He

then can make a guess at the session cookie

and see if the cipher text matches to reveal

entire correct cookie. It is noting again that

in TLS 1.0 protocol, when exchanging large

data with multiple packets, it uses the last ci-

pher text block of the previous packet as an

IV for the next packet (like CBC mode).

In CBC mode, an IV is used in the first block

aiming to make each message unique. In fact,

the IV only adds randomness to the output,

but it is not a secret information.

Having the message:

sessionid=Gxs36NepewqeMI763Hej31pkl

We assume that an attacker initially knows

the IV value. In this case, the string ‘sessionid=

Gxs36NepewqeMI763Hej31pkl’ is a plaintext

and will be XORed with the IV which is ci-

phertext of the previous block in CBC mode.

The attacker can predict the plaintext value

by guessing single character at a time, then

XOR with the IV to check whether it corre-

sponds to the ciphertext value. He executes

 SSL/TLS 공격에 대한 신규 대응 방안 177

the method by injecting a random string

“sessionid=a”, watching the results, and re-

peats the process until he can successfully ob-

tain a cookie character. Once the attack gets

the first correct character, he can apply the

attack to the next character to exploit the entire

cookie value. Although showing the effective-

ness in execution and performance, the attack

still exists limitations, such as the requirement

in the same network of attacker to apply a

MITM attack, the attacker just can make a

guess on only one block at a time, and attacker

should does monitor a modified traffic to see

the matching results with multiple requests.

3.2.1 Countermeasures

It exists a vulnerability when using CBC

mode in block cipher. It was identified in TLS

1.0. However, it was addressed in TLS 1.1 and

TLS 1.2 with the use of “explicit IVs” for each

block. In addition, TLS 1.1 and TLS 1.2 choose

using GCM (authentication-encryption) mode

to operate, so they are not susceptible to this

attack. Some of the browsers have attempted

to implement a solution to address the vulner-

ability while remaining compatible with the

SSL 3.0/TLS 1.0 protocol. If we use a lower

version of TLS or if the server is still using

SSL, we can use a stream cipher such as RC4

instead of block cipher with modes of operation.

3.2.2 Implementations

The software support against the vulner-

ability which recommends client to notice and

consider. With browsers, if we are using

Google, it should be upgraded to Chrome 16

or later. Similarly, with Microsoft, we need

to ensure that MS12-006 has been applied. For

Mozilla, it should be Firefox 10 or later. And

with libraries, they must support TLS 1.1 or

higher.

3.3 BREACH Attack

BREACH (Browser Reconnaissance and

Exfiltration via Adaptive Compression of Hy-

pertext) also targets HTTP compression and

uses the same approach as CRIME. This attack

also uses the victims’ browser to send requests

containing a guess of the secret information

but relies on that the responses reflect the users

input as well as containing the secret in-

formation in the body. Obviously, the response

with smallest size contains the best guess.

Since BREACH targets HTTP compression,

all versions of TLS protocol are vulnerable and

they do not matter which cipher suite is used.

The BREACH attack can even be operated with

only a few thousand request in under a minute.

There are currently no known TLS mitigations

towards this attack.

BREACH exploits the compression and en-

cryption combination between clients and

servers. While the CRIME attack targets the

TLS compression, the BREACH attack targets

HTTP compression. HTTP compressed re-

sponse generated by server compresses whole

parts of the response, except header in-

178 한국전자거래학회지 제22권 제2호

formation. The DEFLATE algorithm consists

of two components. It uses LZ77 instead of

occurrences of characters with pointer values

to reduce space. And, Huffman coding replaces

characters with symbols to optimize the de-

scription of the data to the smallest size

possible. The BREACH attacks the LZ77 com-

pression while minimize the effects of Huffman

coding.

We consider a GET request to an SSL en-

abled web server and observe the response:

GET/stuff/page1.php?id=786345

<a href="page2.php?token=csvfdfcrvet343v

">Searching

<form target="https://www.travel.com:443

/stuff/search.php?id=786345">…

The attacker requests with string ‘id=

786345’ to guess the ‘token=…’ value character

by character. Similar the method in CRIME,

he injects token values in the ‘id ’ and monitor

how the length size has changed in the com-

pressed response. If the injected token matches

the actual token, the length of the response

will be smaller than initial duplicate due to

HTTP compression. In this case, the actual

token value is the length of the string ‘token=

csvfdfcrvet343v.’

The attacker only knows that the ‘token=…’

is a part of the string. He logs into the applica-

tion and initiates the attack by sending a token

‘token=a’.

The request is:

 ‘GET/stuff/page1.php?id=token=a’

and the response is:

<a href="page2.php?token=csvfdfcrvet343v

">Searching

<form target="https://www.travel.com:443

/stuff/search.php?id=token=a">...

The length of the response will decrease

by 6 via the length value of the string ‘token

=…’. The attacker observes the response

length and knows that the injected token is

incorrect. He will repeat the process with dif-

ferent values of the ‘token’. When the attacker

tries ‘token=c’, the request is:

‘GET/stuff/page1.php?id=token=c’

The response is:

<a href="page2.php?token=csvfdfcrvet343v

">Searching

<form target="https://www.travel.com:443

/stuff/search.php?id=token=c">...

The token response length will decrease

by 7 since the first character of token guess

matches the actual token character. The at-

tacker determines that the injected token is

correct. He then varies the next character

and repeats the entire process again until he

has successfully guessed the entire ‘token’

value. In practice, the BREACH attack can be

 SSL/TLS 공격에 대한 신규 대응 방안 179

operated under a minute based on number of

thousand requests and secret size. The

method is effective because the fact that it

allows guessing a secret one character at a

time.

3.3.1 Countermeasures

Some methods can be used to mitigate the

BREACH attack, include disabling HTTP

compression, hiding the response length (by

adding garbage data of random length to the

response), separating secrets from user input,

using same-site cookies flag, masking secrets

(by XORing with a random secret per request),

and rate-limiting the requests.

3.3.2 Implementations

One of a practical implementation of the

BREACH attack, Rupture, is using HTTP in-

jection to execute a meet-in-the-middle attack

on client’s browser to analyze the HTTP traffic

which communicates to a server. However, this

method is still at low risk for organizations

using mailbox like Gmail, Yahoo mail or social

network like Facebook. Compared to it, there

is various faster methods attacker can use to

break or steal secret information. The rules

could be set up in the intrusion-detection sys-

tem or a host-based detection system based

on number of connections needed for a

BREACH attack that is alerted when a number

of connections occursfrom an individual

system.

4. CRIME, BEAST, BREACH

and Other Versions－The

Perfect SSL/TLS Attacks

We can consider obviously that major prob-

lems addressed in SSL/TLS protocol come

from the client (browser) level. A MITM at-

tacker can intercept non-encrypted requests,

mess with them, and trick browser into sending

requests with arbitrary content to the sites that

we care about. It is this interaction that makes

several attacks possible: BEAST, CRIME,

BREACH, RC4, TIME, Lucky13.

In some cases, the mitigation methods or

security countermeasures can be applied help

to protect the transmission against known or

unknown attacks. However, it would take a

lot of discussions, considerations and politics

to get it effective implemented. The solution

is that a server (web site) can control and man-

age which other web sites can initiate requests

to access into it.

4.1 Fixing on DEFLATE against

CRIME/BREACH Attacks

HTTP compression uses DEFLATE which

is an implementation of LZ77 matching and

Huffman coding. The BREACH attack tar-

gets HTTP compression and observes how

the server leaks information in compressed

encrypted response. The attacker issues re-

quests, varying the input until the input

180 한국전자거래학회지 제22권 제2호

Target Example Based on Timeline

Padding Oracle
Steal request

payload
Session cookie

Padding Oracle

model

Somewhere in the

1990’s

Browser Exploit Against

SSL/TLS (BEAST)

Steel request

payload
Session cookie HSR model

Described in 2002

(led to TLS1.1),

demonstrated in

2011

Compression Ratio

Info-leak Made Easy

(CRIME)

Steel request

payload
Session cookie HSR model

Described in 2002,

demonstrated in

2011

Time info-leak Made Easy

(TIME)

Steel response

payload

CSRF token

Session Cookie
HSR model

Demonstrated in

2012

LUCKY13
Steel request

payload
Session cookie

Padding Oracle

model

Demonstrated in

2012

RC4
Steel request

payload
Session cookie

Cryptographic

weakness

Demonstrated in

2013

Browser Reconnaissance

and Exfiltration via

Adaptive Compression of

Hypertext (BREACH)

Steel response

payload
CSRF token

Demonstrated in

2013

<Table 1> SSL/TLS Attacks

matches some secret elsewhere on the page.

Then, he will make a correct guess of secret

by observing the page size decrease based

through the DEFLATE algorithm. Unfor-

tunately, even if the compressor did no LZ77

matching, the attacker might be still able to

vary his chosen plaintext to gain information

about the character frequencies, as the at-

tacker’s injection of characters can change the

Huffman tree used to encode the document.

Since the major problem is compression,

the most efficient way to mitigate the attacks

is to disable compression. However, HTTP

compression typically offers space savings

(around 60%) which translates into faster re-

sponse times for users. The solution for all

those issues is that DEFLATE compressor

fixing to ignore the unique, human-oriented

information in individual files and take ad-

vantage of the large redundancy in HTML,

CSS, and Javascript due to the common

strings inherent to each language. The method

not only produces compatible compressed da-

ta, but also avoids leaking secret information

by using some extra properties.

4.1.1 LZ77 Matching

Secrets already encoded in the data-stream

should never be part of a match candidate. The

matchings are only produced from unlikely

byte numbers to compose majority of a secret

(ASCII symbols), or a string white list common

 SSL/TLS 공격에 대한 신규 대응 방안 181

to the data format. The supported formats in-

clude HTML, CSS, Javascript, and undetected

(auto-detected based on the first 100 bytes of

uncompressed input).

In HTML, CSS and Javascript format,

the matchings are only produced from

bytes unlikely to compose majority of a se-

cret (whitespace, special characters: < >, /,

=, “, #, (), { }), format tag and attribute names

longer than one character, or any global, user-

provided safe strings. With undetected mode,

the matchings do not occur if the user does

not provide a list of safe strings. Furthe-

rmore, with whitelisted strings, for all for-

mats, they begin with an alphanumeric char-

acter in a match if the character immediately

previous to the string is non-alphanumeric,

and end in an alphanumeric character in a

match if the character immediately following

the string is non-alphanumeric. Consequently,

we must ensure that secrets are never a

match source. It does not matter if a valid

match source is used to create output that is

not a valid match source. When this happens,

the pool of match sources that the attacker

may query does not increase.

4.1.2 Huffman Coding

The purpose to modify the Huffman coding

is to leak as less information as possible about

the frequencies of character in any secrets.

The Huffman code is using only probability

models determined by the user, consisting of

a non-dynamic, default frequency table, as

determined by the main file type (HTML,

JS and CSS), fixed length Huffman codes,

and a user-provided frequency table. The

Huffman coding strategy must not change on

every request. Otherwise, an attacker might

be able to determine a secret’s character fre-

quencies by figuring out which injected char-

acters tip the compressor to use a different

strategy.

The user might calculate the frequency table

based only on the first n requests for a resource

after server startup, and use that table only

after all n requests (n = 8), or choose to update

the frequency table with information from a

request only when a random number is less

than 1/4^n, where n is the number of previous

times the table has been updated since server

startup.

The method has a greater size expansion

in the worst case which depends on the longest

code in the Huffman tree. It helps in the case

that an attacker cannot effectively control the

decision to gain information about the page

content.

4.2 LZ77 Replacement in DEFLATE

Compression

In the CRIME or BREACH attack, the tar-

get are secrets exchanged through HTTPs,

SPDY, TLS or any protocol offering secure

communication between a server and a client,

usually at the application layer. The protocol

also needs to compress the requests using a

182 한국전자거래학회지 제22권 제2호

compression algorithm based on DEFLATE.

Common such algorithms are gzip and zlib.

In the challenge, these requirements are im-

plemented by giving the attacker access to a

compression oracle.

The attacker exploit characteristic of LZ77,

one of the two algorithms that forms DEFLATE.

LZ77 scans the input, and when it encounters

the same substring for the second time, it re-

places the second occurrence with a reference

to the first one, in terms of distance and length.

The attacker guess the first byte of the secret

session ID by producing requests whose pay-

load is his guess of the byte. If he got it right,

he can observe that DEFLATE detects two

identical bytes, and produces a shorter com-

pressed than usual byte. To proceed, he repeats

the same for the next byte, appending it after

the bytes he have already discovered. Obviously,

he knows the length of the secrets before stop-

ping guessing.

The Burrows-Wheeler Transform (BWT)

[10] is a reversible algorithm that is used

in the bzip2 compression algorithm. In fact,

this method only does formats the data but

not reduce the size of them, so it will be

more effective when compressed by other

algorithms. When a string of characters is

transformed using BWT, the size of the char-

acters remains the same, and the algorithm

just calculates the order that the characters

appear in. BWT helps compression algorithms

become easier to procedure due to the input

format which contains sets of repeated

characters. Because of characteristics of

move-to-front coding, the data will be more

compressible if they are in a specific format

which consists of statistical encoders such as

Huffman and other arithmetic coding.

Although simple Huffman and arithmetic

coders combine well with the BWT in algo-

rithm process, there is still need a more complex

and better coding scheme. This is because the

probability of a certain value at a given point

in vector depends to a certain extent on the

immediately preceding value. The most im-

portant effect to procedure in practice is that

zeroes exist in the vector. By using Huffman

codes following a run of zeroes, it can compress

the output of the move-to-front coder with

a modified Huffman coder. In addition, we do

a replacement of the Huffman trees for whole

input by a new one for just each 16 kbyte input

block.

5. Conclusion

In this paper, we have presented SSL/

TLS vulnerabilities with specific SSL/TLS

attacks, including CRIME and other ver-

sions: BEAST, BREACH. For each attack,

we also gave implementation in practice and

countermeasures for mitigating the attack

effect. Since the SSL/TLS attacks have in-

creased rapidly because of its weaknesses,

we must protect our transmission carefully

as much as possible. User should always be

 SSL/TLS 공격에 대한 신규 대응 방안 183

concerned and aware of security as the land-

scape changes constantly with the need to

upgrade and to implement software fixes.

If we run a server, it is better to immedi-

ately disable support for TLS export ci-

pher suites. Weshould also disable other in-

secure suites and enable forward secrecy as

well. If we use a browser, we must ensure

that the latest version of browser installed,

and check for upgrades frequently. And if

we are a system admin or developer, we

should ensure that any TLS libraries we use

are up to date.

References

[1] AlFardan, N. and Paterson, K., “Lucky

Thirteen: Breaking the TLS and DTLS

Record Protocols,” IEEE Symposium on

Security and Privacy, http://www.ieee

-security.org/TC/SP2013/papers/4977a526.

pdf, 2013.

[2] AlFardan, N., Bernstein, D., Paterson, K.,

Poettering, B., and Schuldt, J., “On the

Security of RC4 in TLS and WPA,”

http://www.isg.rhul.ac.uk/tls/RC4bia-

ses.pdf, 2013.

[3] Bellare, M. and Rogaway, P., “Entity au-

thentication and key distribution,” pp.

232-249, 1994.

[4] Dierks, T. and Allen, C., “The TLS Proto-

col Version 1.0,” RFC 2246, Internet En-

gineering Task Force, 1999. Available at:

http://www.ietf.org/rfc/rfc2246.txt.

[5] Hwang, S. J. and Lee, C. H., “Padding

Oracle Attack on Block Cipher with CBC|

CBC-Double Mode of Operation using the

BOZ-PAD,” The Journal of Society for

e-Business Studies, Vol. 20, No. 1, pp.

89-97, 2015.

[6] Jin, C. Y., Kim, A. C., and Lim, J. I., “Corre-

lation Analysis in Information Security

Checklist Based on Knowledge Network,”

The Journal of Society for e-Business

Studies, Vol. 19, No. 2, pp. 89-97, 2014.

[7] Mavrogiannopoulos, N., Vercauteren, F.,

Velichkov, V., and Preneel, B., “A cross-

protocol attack on the TLS protocol,”

Proceedings of the 2012 ACM Conference

in Computer and Communications Security,

pp. 62-72, http://doi.acm.org/10.1145/

2382196.23 82206, 2012.

 [8] Popov, A., “Prohibiting RC4 Cipher Suites,”

Work in Progress, draft-ietf-tls-prohib-

iting-rc4-01, 2014.

[9] Prado, A., Harris, N., and Gluck, Y., “The

BREACH Attack,” http://breachattack.com,

2013.

[10] Rescorla, E., “SSL and TLS: Designing

and Building Secure Systems,” Addison-

Wesley, 2001.

[11] Rizzo, J. and Duong, T., “Browser Exploit

Against SSL/TLS,” http://packetstormse

curity.com/files/105499/Browser-Exploi

t-Against-SSL-TLS.html, 2011.

[12] Rizzo, J. and Duong, T., “Here Come The

184 한국전자거래학회지 제22권 제2호

Ninjas,” Ekoparty Security Conference,

2012.

[13] Rizzo, J. and Duong, T., “The CRIME

Attack,” EKOparty Security Conference,

2012.

[14] Rosenfeld, M., “Internet Explorer SSL Vu

lnerability,” 2008. Available at: http://ww

w.thoughtcrime.org/ie-ssl-chain.txt.

[15] Seok, O. N., Han, Y. S., Eom, C. W., Oh,

K. S., and Lee, B. K., “Developing the

Assessment Method for Information Se-

curity Levels,” The Journal of Society for

e-Business Studies, Vol. 16, No. 2, pp.

159-169, 2011.

 SSL/TLS 공격에 대한 신규 대응 방안 185

저 자 소 개

Tran Song Dat Phuc (E-mail: datphuc_89@yahoo.com)

2011 HCMC University of Technology, Vietnam

(Bachelor Degree)

2015 Seoul National University of Science and Technology,

Department of Computer Science and Engineering

(Master Degree)

2015～current Seoul National University of Science and Technology,

Department of Computer Science and Engineering

(Doctoral Candidate)

Research Interests Information Security, Cryptography, Network Security

Changhoon Lee (E-mail: chlee@seoultech.ac.kr)

2001 Hanyang University, Department of Mathematics

(Bachelor Degree)

2003 Korea University, Department of Information Management

and Security (Master Degree)

2008 Korea University, Department of Information

Management and Security (Doctoral Degree)

2009～2012 Hanshin University, Department of Computer Engineering

Assistant Professor

2012～2015 Seoul National University of Science and Technology,

Department of Computer Science and Engineering

Assistant Professor

2015～current Seoul National University of Science and Technology,

Department of Computer Science and Engineering

Associated Professor

Research Interests Information Security, Cryptography, Digital Forensics,

Computer Theory

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

