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부분적으로 가려진 물체 인식을 위한 
어닐드 홉필드 네트워크
Annealed Hopfield Neural Network for 
Recognizing Partially Occluded Objects

윤석훈(Suk-Hun Yoon)*

초   록

컴퓨터 비전 적용 분야에서 부분적으로 가려진 물체 인식의 필요성은 증가하고 있다. 물체를
확인하고 위치를 지정하는 데에 물체가 가려진 것은 심각한 문제를 야기한다. 이 논문은 여행자
소지 수하물에서 위험 물건을 발견하기 위하여 어닐드 홉필드 네트워크를 제안한다. 어닐드
홉필드 네트워크는 하이브리드 홉필드 네트워크와 어닐링 이론에 기초한 확정적 근사방법이다.
하이브리드 홉필드 네트워크는 위험 물체의 이미지에서 발췌한 경계 점들과 코너 점들을
이용한다. 또한 어닐드 홉필드 네트워크의 런타임을 줄이기 위해 임계 온도를 조사하였다.
어닐드 홉필드 네트워크와 하이브리드 홉필드 네트워크의 성능을 비교하기 위하여 광범위한
컴퓨터 실험이 실행되었다.

ABSTRACT

The need for recognition of partially occluded objects is increasing in the area of computer
vision applications. Occlusion causes significant problems in identifying and locating an
object. In this paper, an annealed Hopfield network (AHN) is proposed for detecting threat
objects in passengers’ check-in baggage. AHN is a deterministic approximation that is based
on the hybrid Hopfield network (HHN) and annealing theory. AHN uses boundary features
composed of boundary points and corner points which are extracted from input images
of threat objects. The critical temperature also is examined to reduce the run time of AHN.
Extensive computational experiments have been conducted to compare the performance of
the AHNwith that of the HHN.
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1. Introduction

Detecting objects and estimating their pose

are critical problems and challenging tasks

due to noise, low resolution, occlusion, clutter,

or other interference factors in many com-

puter vision application [4, 14]. In particular,

a key problem for computer vision systems

is how to deal with partial occlusion. In many

real-world images, objects are often surroun-

ded and partially occluded by each other [3].

The large variability of occluders in terms of

their shape, appearance and position intro-

duces an exponential complexity in the data

distribution that is infeasible to be exhau-

stively represented in finite training data [11].

With the rapid development of the com-

puter industry, neural networks have been

appliedto various areas such as control, com-

puter vision and image processing, classi-

fication, and optimization [1, 5, 17]. Hopfield

neural network is a fully connected feedback

neural network. Thus, the output signal for

each neuron is fed back to itself through other

neurons, making Hopfield neural networks

feedback neural networks.

This paper addresses the recognition pro-

blem of partially occluded objects. Hybrid

Hopfield neural network (HHN) has provided

reliable solutions and reduced computational

time in detecting partially occluded objects.

HHN estimated the behavior of neurons based

on the distinguishable value of a connectivity

matrix. However, HHN does not guarantee a

near optimal solution because it depends on

initial conditions. While HHN generally pro-

duced some useful results, it also suffered

from significant drawbacks. These include

many spurious stable points in the case of the

traveling salesman problem.

In this paper, an annealed Hopfield network

(AHN), which is basedon neural networks and

annealing is proposed to recognize the parti-

ally occluded objects. AHN uses corner points

extracted from the boundary of an image by

using a constraint regularization technique and

a mean field annealing method [15]. Following

the literature review in the next section, AHN

is developed in section 3. In addition, a critical

point range of AHN is estimated to try to re-

duce the run time. In section 4, the experi-

mental results of HHN and AHN are provided

and analyzed using a t-test. Finally, a sum-

mary of main results and conclusions are pro-

vided in section 5.

2. Literature Review

2.1 Hopfield Neural Network

Hopfield neural networks can be classified

by discrete Hopfield network (DHN) and con-

tinuous Hopfield network (CHN) [6, 7, 8, 9].

Hopfield constructs neural network by con-

necting many simple processing elements

(neurons) to each other. Two variables (cur-

rent state and output) generally describe an
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th neuron. The current state and the output

are generally denoted by  and  , respec-

tively. A simple nondecreasing monotonic out-

put function   usually relates the output

to the state. This function is designed to limit

the possible values of  to the range -1 to

+1. In other words,  is frequently a step

function (in the case of DHN) or a sigmoid

function (in CHN). When neuron  has a con-

nection made to it from neuron , the strength

of connection is defined as . The input of

each neuron comes from two sources: ex-

ternal inputs () and inputs from other neu-

rons. The total input to neuron  is then [9].

 
≠

 (1)

Each neuron changes the value of its output

or leaves it fixed according to a threshold rule

with thresholds  [9]

→
  

≠

 

→
 

≠

 

(2)

Hopfield constructed an energy function [9]

   



≠










(3)

where   

In this paper, the states of the neurons are

expressed by the vector , the outputs by the

vector  , the connection strengths by the mat-

rix  , and the external inputs by the vector .

The discrete version where the value of the

state vector at time step +1 is related to the

neuron output vector at time step  by the

equation [2]

  (4)

The motion of the state of a system which

has  neurons in a state space describes the

computation that the set of neurons is per-

forming. Each neuron  readjusts its state

randomly in time but with a mean attempt

rate . The value of output changes can be

expanded to more than two-dimensional net-

work as follows

 →    

→    

(5)

The CHN describes the behavior of the net-

work by a following differential equation [2]







 (6)

and CHN has output function  as a sig-

moid function

 
exp⁄

 (7)

 

If the elements of  are updated asyn-

chronously and the connection matrix  is

symmetric, then Hopfield shows that the

DHN has a Liapunov function of the form [2]

   


 (8)

where the contents of  are 0, 1.
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For CHN with either synchronous or asyn-

chronous update, the following Liapunov func-

tion exist

  


 (9)

where  










Further, in high-gain limit (i.e., → and

 asymptotically approaches a step func-

tion), the Liapunov function of CHN is approx-

imately the same as that of DHN.

2.2 Hybrid Hopfield Network

Hybrid Hopfield network (HHN) con-

structs a two-dimensional array for a match-

ing problem. HHN approaches a matching

problem through minimizing the following

energy function [10]

  




















≠










≠



(10)

The columns of an array represent nodes of

an object model, and the rows represent nodes

of an input object.Therefore, the state of each

neuron represents measure of matching be-

tween two nodes from each graph.  is the

binary variable which converges to 1 if the

th node in the input image matches the th

node in the object model; otherwise, it con-

verges to 0. The first term in Eq. (10) is a

compatibility constraint. The normalizing lo-

cal and relational features which have differ-

ent measures gives the tolerance for ambi-

guity of the features. The last two terms en-

force the uniqueness constraint so that each

node in the object model eventually matches

only one node in the input image and the sum-

mation of the outputs of the neurons in each

row or column equals 1. In addition, normaliz-

ing local and relational features which have

different measures gives a tolerance for am-

biguity of the features as follows

 × ×  (11)

× 

The fuzzy function  has a value of 1 for a

positive support and -1 for a negative support.

The value of   is defined such that if

the absolute value of the difference between

 and  is less than a threshold  , then  

is set to 1, otherwise   is set to -1. The

values of W’s reflect the importance of each

term. The sum of the weights is 1. The 
and  represents local features with angles

between corners and  represents relational

features with distances between corners. Hop-

field proved that the energy function is a Lia-

pnov function. Thus,the energy function con-

verges to a local minimum when the states

of neurons converge to stable states [13].

HHN combines the benefits of DHN and

CHN. HHN uses output of DHN as inputs of

CHN since the configuration of the outputs

of DHN is very close to the stable state of
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the desired output of CHN. After running

DHN, HHN adjusts the output of DHN by an

analyzing procedure based upon CHN theory.

3. Annealed Hopfield

Network

In recognizing target objects by boundary-

based approaches, corner points are important

since the information of the shape is concen-

trated at the points having high curvatures.

From the corner points, two useful features

can be extracted which are local features (an

angle between neighboring corners) and rela-

tional features (distances between the cor-

ners). These features which are invariant un-

der translational and rotational changes, are

used for the robust shape description of the

boundary. Corner points are usually detected

in a curvature function space by capturing the

points whose curvature values are above a

certain threshold value. A graph can be con-

structed for an object model using corner

points as nodes of the graph.For the matching

process, a similar graph is constructed for

the input image which may consist of one or

several overlapped objects.

A motion equation is shown in Eq. (6) with

the sigmoid function g. The energy function

of the matching problem is organized as Eq.

(8). The output of each neuron for the mat-

ching problem has the value of 0 or 1 to re-

present measure of similarity. Output of each

neuron will be called a spin for the annealing

approach. It was assumed that the spin inter-

actions  are symmetric and have no self-

interaction (i.e.,  = 0). The state space of

each spin is

∈ for ≤  ≤ (12)

In simulated annealing, random perturbations

move the system towards its thermal equili-

brium at the current temperature. Assuming

that all the spins are at equilibrium, one can

determine the th spin average <> from the

Boltzmann distribution and the change in the

average system energy as  flips from 0 to 1.

Let

     

     

(13)

Thenthe equilibrium value of <> is calcu-

lated as below [16]

<> × × (14)


exp

 exp
 

exp
 

 exp
 





 exp
 





The  is defined to represent the quantity

, which is the mean or effective field

experienced by the  spin. It generally is

difficult to compute  for large N
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<> 〈     (15)






〉










<>






<>

Since  and  are not independent, their ex-

pected values are not separable in the above

equation. However, when the number of in-

teracting spins is large enough that the effect

of any single spin on any other spinis very

small in comparison to the total field, then the

mean field approximation can be as follows

<> 








<><> (16)






<>

The Eq. (14) and Eq. (16) has the same struc-

ture as Eq. (7) and Eq. (8). In addition, random

perturbation to move the system towards its

thermal equilibrium in simulated annealing is

the same as updating rule of the Hopfield

network. The only difference is that  in eq.

(7) is replaced with temperature  . It means

that given  , flow to thermal equilibrium in

the annealing process is the same as the flow

of Hopfield network given . Therefore, if

we find the stable points of states by slowly

lowering  from the high value, then global

solutions or near global solution of the net-

work will be found without initial restriction.

<Figure 1> represents the flowchart of the

AHN.

<Figure 1> Flow Chart of the Algorithm

An initial temperature for the annealed net-

works significantly affects the quality of final

solutions. Starting at too high temperature is

time-consuming since no progress is made

until the critical temperature () is reached.

On the contrary, starting at too low temper-

ature quickly can force the system into a poor

solution. Van Den Bout et al. [16] used a nor-

malization technique toimprove solutions of

TSP. However, the technique was hard to im-

plement since it was not a natural flow in bio-

logical neural networks (or the analog Hop-

field network model). Instead, in this paper the

sigmoid function is used to derive the critical

temperature. The spin perturbations near 
are small enough so that all the spins remain

near their high temperature average of 1/N.

With this assumption, the effect that mean

field changes have on the spins are found

from the sigmoid function in Eq. (14) to be
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


 

 (17)

From Eq. (6),

∂
∂

   
 ≠

(18)

The change of  () cause the change

of inputs of the other neurons  as follows

∆ 
∆

≠

 



∆ (19)

∆
The change of  () from the change of

 is

∆ 
∆  


∆ (20)

From the change of  (), the new input

of th neuron (∆ ) is

∆ 
∆

≠


∆ (21)

 
≠

 


∆

∆ 



≠




Therefore, the new perturbation ∆ is de-
rived from the Eq. (21)

∆ 
∆ (22)

 


 

∆
≠




In fact, Hopfield network in the object

matching problem is a fully connected net-

work and the flow of the output change of

neurons is very complicated. The result as-

sumes that output changes of all the other

neurons caused by the change of the th

neuron () are fed back to the th neuron

and force the change of the th neuron to

be accelerated when the temperature is near

. Therefore, the effect of other neuron out-

puts is ignored to simplify this problem. Let

an average of connection strength be  . At

the critical temperature, the spin perturba-

tion must persist so that ∆ ∆. As a
result,

∆   

∆  (23)

  

∆

At   ∆ ∆

 


≅ (24)

for ≫ .

4. Experimental Results

Eight guns (models) and five tools were

used to make seventy-seven occluded ob-

jects forthe matching procedure. The tools

were a hammer, a screwdriver, nuts, pliers

and spanners (wrenches). Model images were
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obtained by a camera and a commercially

available digitizer. Boundaries of the images

were obtained by the chain code method. The

number of boundary points for the models

ranged from 225 to 514. After extracting the

boundary, corner points (nodes) were ex-

tracted by using the optimal boundary smoo-

thing method based on the regularization

technique [15]. The number of nodes in the

models ranged from 7 to 14. From each node,

features were extracted: an angle as a local

feature and the distance between nodes as

a relational feature. Occluded images were

obtained through the same procedure as

models. The number of boundary points for

the occluded images ranged from 421 to 816

and the number of nodes ranged from 7 to

29. <Figure 2> showed the boundaries and

corner points of a sample model and occluded

object. Occlusion rate (OR) was computed as

follows:



No. of nodes of the model
occlueded by another object (25)

No. of nodes of the model

To compare the performance of HHN and

AHN, matching score (MS) was computed as

follows:


No. of exactly matched nodes

(26)
No. of matchable nodes

In <Figure 2(a)>, the number of the corner

points in the model were 8. Among them, 2

corner points were covered in the occluded

object as shown in <Figure 2(b)> and hence

OR was 0.25.

<Figure 3> showed the extracted corner

points of the model and the occluded model

after the matching procedure. After occlusion,

2 corner points of the model in <Figure 3(a)>

were covered by a hammer and only 6 points

could be matched (that is, no. of matchable

nodes was 6). As shown in <Figure 3(b)>,

6 points of the model were exactly matched

with the corresponding points in the occluded

object and as a result MS was 1.

(a) Model

(b) Occluded object

<Figure 2> Boundaries and Corner
Points of the Model and the
Occluded Object
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(a) Model after matching

(b) Occluded objectafter matching

<Figure 3> Matched Nodes in the Model
and the Occluded Object

Occlusion Rate HHN AHN
0∼9% 0.93 1.00
10∼19% 0.90 1.00
20∼29% 0.80 0.95
30∼39% 0.71 0.86
40∼49% 0.84 0.95
50∼59% 0.42 0.71
over 60 % 0 0.33
Total 0.72 0.88

<Table 1> Results of the Experiments
(Matching Score)

The results of the HHN and the AHN were

shown in <Table 1>. AHN gave perfect MS

for slightly occluded objects up to 20% OR.

Even for half occluded objects, AHN provided

more than 90% MS. Without heavily occluded

objects, MS of the AHN were 96% on the

average. From the results of slightly occluded

objects, it was shown that AHN provided near

optimum solutions for the partially occluded

object recognition.

AHN decreased the temperature by some

rate (5% in the experiment) to escape local

minima and find a global minimum. However,

it would take a long time to reach the opti-

mum if an initial temperature were too high.

Thus, estimation of the initial temperature

reasonably high to reach the optimum called

the critical temperature () would be required.

As shown in <Figure 4>, energy dropped pre-

cipitously around the critical temperature. The

experimental result of  was 0.02 to 0.1 while

the estimate of  was 0.7. This discrepancy

might result from the smaller number of neu-

rons than we assumed.

To compare the performance of AHN and

HHN, a -test was used since the sampling

size was large for the population to follow

normal distribution [12]. The complete t-test

<Figure 4> Energy Graph
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was summarized in <Table 2>. Using a sig-

nificant level α = 0.05 in the -test, it was con-

cluded that AHN provided better matching

score than HHN.

　 AHN HHN

Mean 0.876623 0.722468

Variance 0.091654 0.186324
Observations 77 77

Pearson Correlation 0.565203

Hypothesized Mean
Difference

0

df 76

t Stat 3.748057
P(T <= t) one-tail 0.000173

t Critical one-tail 1.665151

P(T <= t) two-tail 0.000345
t Critical two-tail 1.991675

<Table 2> Results of t-Test

5. Summary and Conclusions

This paper has addressed the recognition

problem of threat objects under partial occlu-

sion. For the recognition problems, HHN has

provided good results but severely depended

on initial conditions. In this paper, AHN which

incorporates Hopfield network and the annea-

ling theory was developed to avoid the draw-

back of the HHN. Experiments show that

AHN outperforms HHN regardless of the oc-

clusion rates. For slightly occluded objects,

AHN provided near optimum solutions. The

critical temperature was estimated and used

as an initial temperature for the annealing pro-

cess to shorten the run-time of the algorithm.

AHN is a robust approach for solving two-di-

mensional detection problems under occlusion.

A three-dimensional recognition problem of

partially occluded objects would be the exten-

sion of this research.
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